Type 1 fimbrial structure and regulation in Salmonella enterica serovar Typhimurium
نویسندگان
چکیده
has been approved by the Examining Committee for the thesis requirement for the Master of Science degree in Microbiology at the May 2012 graduation. ii ACKNOWLEDGEMENTS I would like to thank Dr. Steve Clegg for his support and guidance during my time in his lab. He has helped me learn a lot about how to do science and how to think about science. He has been supportive of the decisions I have made and I have enjoyed my time in the lab. I would also like to thank my committee members Dr. Craig Ellermeier and Dr. Brad Jones for their time and helpful advice. The members of the Clegg Lab have been sources of guidance, advice, and friendship during my time here. Jean Sippy have made the lab an interesting place to work and I will always be grateful to them for that. I must also thank my family, who has always been very supportive of me. They are always interested in my work and have helped me through all my years of education. iii ABSTRACT Salmonella enterica serovar Typhimurium is a common cause of bacterial food poisoning, and S. Typhimurium expresses type 1 fimbriae that enable the bacteria to bind to eukaryotic cells. Fimbrial proteins are encoded by the fim gene cluster (fimAICDHFZYW). The structural components of the fimbriae are FimA (major subunit), FimI, FimH (adhesin), and FimF (adaptor). In order to determine the genes required for fimbrial assembly in S. Typhimurium SL1344, mutations in fimA, fimI, fimH, and fimF were constructed and examined for their ability to produce fimbriae. While SL1344∆fimI was able to assemble fimbriae, SL1344∆fimA, ∆fimH, and ∆fimF were afimbriate, indicating that fimA, fimH, and fimF are each required for fimbrial formation in S. Typhimurium. These results suggest differences in the genetic requirements when comparing S. Typhimurium type 1 fimbrial and E. coli type 1 and Pap fimbrial systems. S. Typhimurium fim gene regulation was also examined. FimZ and FimY are positive regulators of fimbrial gene expression, and FimW is a negative regulator. FimZ is closely related to the family of response regulators of two-component systems. The response regulator activity of FimZ was examined by substituting the conserved aspartate-56 residue, the putative site of phosphorylation, with alanine, to generate an inactive phosphorylation site, or glutamate, to mimic a phosphorylated protein. Resulting strains were examined for fimbrial production and gene expression. It was observed that when the …
منابع مشابه
Multilocus Sequence Typing of the Clinical Isolates of Salmonella Enterica Serovar Typhimurium in Tehran Hospitals
Background: Salmonella enterica serovar Typhimurium is one of the most important serovars of Salmonella enterica and is associated with human salmonellosis worldwide. Many epidemiological studies have focused on the characteristics of Salmonella Typhimurium in many countries as well as in Asia. This study was conducted to investigate the genetic characteristics of Salmonella Typhimurium using m...
متن کاملFimZ is a molecular link between sticking and swimming in Salmonella enterica serovar Typhimurium.
Salmonella enterica serovar Typhimurium produces two types of filamentous appendages on its surface. Fimbriae mediate adherence to tissues and cells via receptor-specific interactions, and flagella are the organelles of motility. These appendages play a role in colonization and dissemination, respectively, from infected surfaces and may be important components of bacterial survival. Increased e...
متن کاملA novel CsrA titration mechanism regulates fimbrial gene expression in Salmonella typhimurium.
A hierarchical control of fimbrial gene expression limits laboratory grown cultures of Salmonella enterica serovar typhimurium (S. typhimurium) to the production of type I fimbriae encoded by the fimAICDHF operon. Here we show that an unlikely culprit, namely the 5'-untranslated region (5'-UTR) of a messenger (m)RNA, coordinated the regulation. Binding of CsrA to the 5'-UTR of the pefACDEF tran...
متن کاملA Constitutively Mannose-Sensitive Agglutinating Salmonella enterica subsp. enterica Serovar Typhimurium Strain, Carrying a Transposon in the Fimbrial Usher Gene stbC, Exhibits Multidrug Resistance and Flagellated Phenotypes
Static broth culture favors Salmonella enterica subsp. enterica serovar Typhimurium to produce type 1 fimbriae, while solid agar inhibits its expression. A transposon inserted in stbC, which would encode an usher for Stb fimbriae of a non-flagellar Salmonella enterica subsp. enterica serovar Typhimurium LB5010 strain, conferred it to agglutinate yeast cells on both cultures. RT-PCR revealed tha...
متن کاملCharacterization of FimY as a coactivator of type 1 fimbrial expression in Salmonella enterica serovar Typhimurium.
Type 1 fimbriae of Salmonella enterica serovar Typhimurium are surface appendages that carry adhesins specific for mannosylated host glycoconjugates. Regulation of the major fimbrial subunit is thought to be controlled by a number of ancillary fim genes, including fimZ, fimY, fimW, and fimU. Previous studies using a FimZ mutant have indicated that this protein is necessary for fimA expression, ...
متن کاملAdhesin-dependent binding and uptake of Salmonella enterica serovar Typhimurium by dendritic cells.
Salmonella enterica serovar Typhimurium can be internalized by immature dendritic cells (DCs). The interacting host and bacterial molecules initiating this process remain uncharacterized. The objective of this study was to investigate whether specific fimbriae are involved in the early step of binding and uptake of Salmonella by DCs. Type 1 fimbriated S. enterica serovar Typhimurium or recombin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016